Dalam era teknologi modern, pengembangan sistem otomatis semakin penting untuk meningkatkan kenyamanan dan efisiensi penggunaan ruang publik seperti toilet. Tugas besar ini bertujuan untuk merancang dan mensimulasikan sistem toilet otomatis menggunakan berbagai sensor di Proteus. Sensor-sensor yang digunakan meliputi sensor jarak untuk mendeteksi keberadaan pengguna, PIR sensor untuk mendeteksi gerakan, sensor suhu untuk mengontrol kenyamanan, sensor gas untuk keamanan, sound sensor untuk mendeteksi kebisingan, dan touch sensor untuk interaksi pengguna.
Integrasi sensor-sensor ini akan memungkinkan toilet untuk beroperasi secara otomatis, mulai dari pembukaan pintu, pengendalian penerangan, hingga pengelolaan ventilasi dan kebersihan. Simulasi ini tidak hanya mengeksplorasi kemungkinan teknis dalam mengintegrasikan sensor-sensor tersebut, tetapi juga menawarkan solusi inovatif untuk meningkatkan pengalaman pengguna dan efisiensi pengelolaan fasilitas publik. Dengan pendekatan ini, diharapkan sistem toilet otomatis yang dihasilkan dapat memberikan kontribusi positif dalam meningkatkan standar kesehatan dan kenyamanan dalam ruang publik.
Dapat mensimulasikan rangkaian bebrapa macam sensor
3. Alat dan bahan
A. Alat
Instrumen
1. DC Voltmeter
DC Voltmeter merupakan alat yang digunakan untuk mengukur besar tengangan pada suatu komponen. Cara pemakaiannya adalah dengan memparalelkan kaki2 Voltmeter dengan komponen yang akan diuji tegangannya.
Berikut adalah Spesifikasi dan keterangan Probe DC Volemeter
Generator
1. Power
Berfungsi untuk memberikan tegangan sumber pada rangkaian
Input voltage: 5V-12V
Output voltage: 5V
Output Current: MAX 3A
Output power:15W
conversion efficiency: 96%
2. Baterai
Spesifikasi
Input voltage: ac 100~240v / dc 10~30v
Output voltage: dc 1~35v
Max. Input current: dc 14a
Charging current: 0.1~10a
Discharging current: 0.1~1.0a
Balance current: 1.5a/cell max
Max. Discharging power: 15w
Max. Charging power: ac 100w / dc 250w
Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
Ukuran: 126x115x49mm
Berat: 460gr
B. Bahan
Resistor
Resistor merupakan komponen elektronika yang berguna untuk menghambat aliran arus listrik sehingga tidak terjadi short circuit. mempunyai resistansi yang berbeda beda sesuai kebutuhan.
Resistor
Spesifikasi :
Dioda
Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya.
Spesifikasi:
Transistor NPN
Sederhananya, transistor NPN merupakan komponen elektronika yang terdiri dari dua semikonduktor tipe-n yang mengapit semikonduktor. Ketika sinyal kecil diberikan pada lapisan basis transistor, maka transistor NPN akan mengalirkan arus listrik dari lapisan kolektor ke lapisan emitor. Arus listrik yang mengalir melalui transistor dapat dikendalikan oleh sinyal kecil yang diberikan pada lapisan basis.
Konfigurasi Pin:
Spesifikasi :
Operational amplifer
Operational Amplifier atau yang lebih sering
disebut op amp merupakan suatu komponen elektronika analog yang berfungsi
sebagai penguat atau amplifier multiguna yang diwujudkan dalam sebuah IC
op-amp.
Karakteristik
IC OpAmp
• Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
• Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
• Karakteristik tidak berubah dengan suhu
Konfigurasi Pin:
Spesifikasi :
. Potensiometer
Potensiometer adalah sebuah alat elektronik yang digunakan untuk mengukur dan mengontrol tegangan listrik dalam suatu rangkaian. Potensiometer sering digunakan sebagai pengatur volume pada perangkat audio, pengatur kecerahan lampu, dan dalam berbagai aplikasi lain yang memerlukan kontrol variabel terhadap tegangan atau arus listrik.
Spesifikasi :
Komponen Input
1) Sensor MQ2
Sensor MQ2 adalah sensor gas yang sensitif terhadap berberpa zat yang berbahaya seperti gas LPG, propana, metana, karbon monoksida, alkohol, dan asap mulai dari 200 dan 10.000 ppm. MQ2 dikenal sebagai chemiresistor karena pendeteksinya bergantung pada perubahan resistansi penginderaan bahan saat terkena gas.
Konfigurasi Pin:
Spesifikasi :
Grafik respon MQ2 sensor:
2) Sensor PIR
Sensor
PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya
pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak
memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah
dari luar.
Konfigurasi Pin:
Spesifikasi:
Grafik respon sensor PIR:
3. Touch Sensor
Touchpad bekerja dengan cara mendeteksi sentuhan jari-jari manusia melalui sensor capacitance yang terletak pada permukaan dan memanjang membentuk sumbu vertikal dan horizontal. Touchpad tidak dapat mendeteksi sentuhan benda lainnya selain jari manusia karena posisi sentuhan ditentukan melalui kombinasi cara kerja antara sensor capacitance sumbu vertikal dan horizontal.
Konfigurasi pin :
Spesifikasi
Grafik Respon Sensor Touch
Dapat dilihat bahwa pada grafik di atas saat sentuhan terdeteksi maka signal touch akan muncul.
4. Sensor Suara
Sensor suara adalah sebuah alat yang mampu mengubah gelombang Sinusioda suara menjadi gelombang sinus energi listrik (Alternating Sinusioda Electric Current). Sensor suara bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang juga terdapat sebuah kumparan kecil di balik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.
Grafik respon sound detector
Jejak hijau tua adalah output audio dari detektor suara. Tegangan audio langsung dari mikrofon ditemukan pada output ini.
Jejak hijau muda adalah keluaran amplop. Tegangan analog ini melacak amplitudo suara. Yang menarik, perhatikan bahwa denyut nadi ketiga terasa lebih keras saat berjalan.
Akhirnya, garis merah adalah output gerbang. Output ini rendah ketika kondisi tenang dan menjadi tinggi ketika suara terdeteksi.
5. Sensor Suhu LM35
Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt.
Konfigurasi Pin:
Spesifikasi :
Berikut hubungan resistansi dengan kenaikan suhu pada sensor LM35:
6. Sensor Jarak
GP2D12 merupakan salah satu sensor jarak dengan keluaran tegangan analog. Jarak yang bisa dideteksi GP2D12 mulai dari 8cm sampai 80cm, sedangkan tegangan yang dikeluarkan adalah mulai dari 2,6 Vdc dan terus turun sampai sekitar 0,5 Vdc, sehingga jarak berbanding terbalik dengan tegangan, jadi tegangan akan semakin tinggi pada saat jarak semakin dekat.
Konfigurasi Pin:
Spesifikasi:
Grafik Respon
Komponen Output
1).LED
Light Emitting Diode atau yang sering disingkat LED merupakan sebuah komponen elektromagnetik yang dapat memancarkan cahaya monokromatik melalui tegangan maju. LED terbuat dari bahan semi konduktor yang merupakan keluarga dioda.
Klasifikasi tegangan LED menurut warna yang dihasilkan:
Infra merah : 1,6 V.
Merah : 1,8 V – 2,1 V.
Oranye : 2,2 V.
Kuning : 2,4 V.
Hijau : 2,6 V.
Biru : 3,0 V – 3,5 V.
Putih : 3,0 – 3,6 V.
Ultraviolet : 3,5 V.
Pin Out:
2).Relay
Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch).
Spesifikasi
Konfigurasi Pin:
3).Motor DC
Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion).
Spesifikasi :
Built-in gearbox
Vsuplai : Dc 12V
Arus : 2 A
Speed : 400 rpm
Torsi : 6.5 Kg.cm
Ratio gear : 1:21
Dimensi body : panjang 5 cm x diameter 2,5 cm
Dimensi shaft : panjang 1 cm x diameter 4 mm
Berat : 0,2 Kg
Pinout
Grafik respon
4). Logic Gates
Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R).
Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Cara menghitung nilai resistor:
Tabel warna
Contoh :
Gelang ke 1: Coklat = 1
Gelang ke 2: Hitam = 0
Gelang ke 3: Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke : Perak = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
Dioda
Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.
Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.
Dioda dapat dibagi menjadi beberapa jenis:
1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali.
Untuk menentukan arus zenner berlaku persamaan:
Keterangan:
Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.
Transistor
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.
Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.
Rumus-rumus transistor:
Spesifikasi :
Bi-Polar Transistor
DC Current Gain (hFE) is 800 maximum
Continuous Collector current (IC) is 100mA
Emitter Base Voltage (VBE) is > 0.6V
Base Current(IB) is 5mA maximum
Konfigurasi Transistor
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.
Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.
Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
konfigurasi transistor yang digunakan
1. Fixed Bias
Fixed bias pada transistor BJT adalah metode yang sangat sederhana di mana tegangan basis transistor ditetapkan oleh sumber tegangan eksternal melalui sebuah resistor basis (RB). Konfigurasi dasar rangkaian ini melibatkan tegangan suplai (VCC), resistor kolektor (RC), dan resistor basis yang terhubung ke sumber tegangan bias (VBB). Kelebihan dari metode ini adalah kesederhanaannya, namun kelemahannya adalah stabilitas yang rendah. Fixed bias sangat sensitif terhadap variasi parameter transistor seperti β (gain) dan perubahan suhu, sehingga titik kerja transistor dapat mudah bergeser.
Gambar Rangkaian Fixed Bias
Rumus Untuk Rangkaian Fixed Bias
2. Self Bias
Self bias meningkatkan stabilitas dengan menambahkan resistor emitor (RE) yang memberikan umpan balik negatif. Dalam konfigurasi self bias, tegangan basis diatur melalui resistor basis (RB) dan tegangan pada emitor yang dikendalikan oleh arus emitor (IE) yang mengalir melalui RE. Ini membantu menstabilkan arus kolektor (IC) karena perubahan dalam arus kolektor akan mempengaruhi tegangan emitor dan, pada gilirannya, menyesuaikan tegangan basis-emitor (VBE). Metode ini menawarkan stabilitas yang lebih baik dibandingkan fixed bias, tetapi masih relatif sederhana.
Gambar Rangkaian Self Bias
Rumus untuk Rangkaian Self Bias
3. Emitter Bias
Emitter bias menggabungkan pembagi tegangan untuk basis dan resistor emitor untuk mencapai stabilitas yang lebih tinggi. Konfigurasi ini melibatkan dua resistor pembagi tegangan (RB1 dan RB2) yang menetapkan tegangan basis, serta resistor emitor (RE) yang menyediakan umpan balik negatif. Pembagi tegangan memastikan tegangan basis tetap stabil meskipun ada perubahan dalam tegangan suplai atau parameter transistor. Sementara itu, resistor emitor menambah stabilitas termal dengan mengurangi efek perubahan suhu pada arus kolektor. Emitter bias adalah metode yang sangat stabil dan cocok untuk aplikasi yang memerlukan titik kerja yang sangat stabil.
Gambar Rangkaian Emitter Bias
Rumus untuk Rangkaian Emitter Bias
4. Voltage Divider
Voltage-divider Bias adalah arus bias didapatkan dari tegangan di R2 dari hubungan VCC seri dengan R1 dan R2 seperti gambar 61. Untuk mencari arus IB maka dilakukan perubahan rangkaian dengan memakai metoda thevenin sehingga menghasilkan rangkaian pengganti seperti gambar 62. dimana,
Op-Amp
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.
Op-Amp memiliki beberapa karakteristik, diantaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)
Amplifier Operasional:
Penguat Pembalik:
Istilah berikut digunakan dalam rumus dan persamaan untuk Penguatan Operasional.
·R f = Resistor umpan balik
·R in = Resistor Masukan
·V in = Tegangan masukan
·V keluar = Tegangan keluaran
·Av = Penguatan Tegangan
Penguatan tegangan:
Gain loop dekat dari penguat pembalik diberikan oleh;
Tegangan Keluaran:
Tegangan keluaran tidak sefasa dengan tegangan masukan sehingga dikenal sebagai penguat pembalik .
Penguat Non-Pembalik:
Istilah yang digunakan untuk rumus dan persamaan Penguat Non-Pembalik.
·R f = Resistor umpan balik
·R = Resistor Tanah
·V masuk = Tegangan masukan
·V keluar = Tegangan keluaran
·Av = Penguatan Tegangan
Keuntungan Penguat:
Gain total penguat non-pembalik adalah;
Tegangan Keluaran:
Tegangan output penguat non-pembalik sefasa dengan tegangan inputnya dan diberikan oleh;
Unity Gain Amplifier / Buffer / Pengikut Tegangan:
Jika resistor umpan balik dilepas yaitu R f = 0, penguat non-pembalik akan menjadi pengikut / penyangga tegangan
Penguat Diferensial:
Istilah yang digunakan untuk rumus Penguat Diferensial.
·R f = Resistor umpan balik
·R a = Resistor Input Pembalik
·R b = Resistor Input Non Pembalik
·R g = Resistor Ground Non Pembalik
·V a = Tegangan input pembalik
·V b = Tegangan Input Non Pembalik
·V keluar = Tegangan keluaran
·Av = Penguatan Tegangan
Keluaran Umum:
tegangan keluaran dari rangkaian yang diberikan di atas adalah;
Keluaran Diferensial Berskala:
Jika resistor R f = R g & R a = R b , maka output akan diskalakan perbedaan dari tegangan input;
Respon karakteristik I-O:
Gambar grafik ini memperlihatkan rangkaian op-amp dengan kurva
karakteristik Input-Output yaitu hubungan Vi terhadap VO. Dari kurva
Karakteristik I-O tersebut amplifier bekerja pada karakteristik yang
membentuk hubungan linear artinya semakin besar Vi maka semakin besar
juga VO dan sebaliknya. Operasi amplifier menghindari output dalam kondisi
saturasi karena akan membuat cacat keluaran outputnya
Relay
Relay adalah suatu peranti yang bekerja berdasarkan elektromagnetik untuk menggerakan sejumlah kontaktor yang tersusun atau sebuah saklar elektronis yang dapat dikendalikan dari rangkaian elektronik lainnya dengan memanfaatkan arus listrik sebagai sumber energinya. Kontaktor akan tertutup (menyala) atau terbuka (mati) karena efek induksi magnet yang dihasilkan kumparan (induktor) ketika dialiri arus listrik. Berbeda dengan saklar, pergerakan kontaktor (on atau off) dilakukan manual tanpa perlu arus listrik.
Fungsi-fungsi dan Aplikasi Relay
Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :
Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).
Kapasitas Pengalihan Maksimum:
Baterai
Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable).
Baterai dalam sistem PV mengalami berulang kali siklus pengisian dan pengosongan selama umur pakainya. Siklus hidup (cycle life) baterai adalah banyaknya pengisian dan pengosongan hingga kapasitas baterai turun (melemah) dan tersisa 80% dari kapasitas nominalnya. Pabrik baterai biasanya mencantumkan siklus hidup pada spesifikasi teknis baterai. Mencantumkan satu nilai siklus hidup (cycle life) sebenarnya terlalu menyederhanakan informasi, karena siklus hidup baterai juga tergantung pada suhu baterai.
Dari grafik di atas, terlihat pada suhu operasional baterai yang lebih rendah, siklus hidup baterai lebih lama. Siklus hidup baterai juga tergantung dari DoD, artinya baterai yang dikosongkan hanya 50% dari kapasitasnya, berumur lebih lama jika dikosongkan hingga 80%, namun membuat sistem menjadi lebih mahal, karena membutuhkan kapasitas baterai lebih besar untuk mengakomodasi kebutuhan yang sama.
Jika pada suhu operasional lebih rendah, umur baterai lebih lama, namun ada efek negatif berkaitan dengan kapasitas baterai. Pada suhu yang lebih rendah, kapasitas baterai menjadi lebih rendah. Hal ini disebabkan karena pada suhu yang lebih tinggi, reaksi kimia yang terjadi pada baterai bergerak lebih aktif/cepat, sehingga kapasitas baterai cenderung lebih tinggi.
Terkadang, pada suhu yang lebih tinggi, kapasitas baterai justru dapat lebih besar dari angka nominalnya, meskipun pada suhu tinggi, elemen baterai terlalu aktif, juga berakibat buruk pada kesehatan baterai.
LED
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Tabel warna dan material LED
Motor DC
Motor listrik adalah alat untuk mengubah energi listrik menjadi energi mekanik. Alat yang berfungsi sebaliknya, mengubah energi mekanik menjadi energi listrik disebut generator atau dinamo. Motor listrik dapat ditemukan pada peralatan rumah tangga seperti kipas angin, mesin cuci, pompa air dan penyedot debu
Motor terdiri atas 2 bagian utama yaitu stator dan motor. Pada stator terdapat lilitan (winding) atau magnet permanen, sedangkan rotor adalah bagian yang dialiri dengan sumber arus DC. Arus yang melalui medan magnet inilah yang menyebabkan rotor dapat berputar. Arah gaya elektromagnet yang ditimbulkan akibat medan magnet yang dilalui oleh arus dapat ditentukan dengan menggunakan kaidah tangan kanan.
Keuntungan utama motor DC adalah sebagai pengendali kecepatan, yang tidak mempengaruhi kualitas pasokan daya. Motor ini dapat dikendalikan dengan mengatur:
Tegangan dinamo : meningkatkan tegangan dinamo akan meningkatkan kecepatan
Arus medan : menurunkan arus medan akan meningkatkan kecepatan.
Mekanisme Kerja Motor D
Mekanisme kerja untuk seluruh jenis motor secara umum sama
Arus listrik dalam medan magnet akan menimbulkan gaya.
Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapat gaya pada arah yang berlawanan.
Pasangan gaya menghasilkan torsi untuk memutar kumparan.
Motor- motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putar yang lebih seragam dari medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan
Potensiometer
Potensiometer adalah sebuah alat elektronik yang digunakan untuk mengukur dan mengontrol tegangan listrik dalam suatu rangkaian. Potensiometer sering digunakan sebagai pengatur volume pada perangkat audio, pengatur kecerahan lampu, dan dalam berbagai aplikasi lain yang memerlukan kontrol variabel terhadap tegangan atau arus listrik.
Bagian Utama Potensiometer
Resistor: Bagian utama dari potensiometer adalah resistor yang berbentuk linear atau melingkar.
Kontak Geser (Wiper): Sebuah kontak geser yang dapat bergerak sepanjang resistor. Kontak ini mengubah posisi untuk menghasilkan berbagai nilai resistansi.
Tiga Terminal:
- Terminal pertama terhubung ke salah satu ujung resistor.
- Terminal kedua terhubung ke ujung lain dari resistor. - Terminal ketiga terhubung ke kontak geser (wiper).
Cara kerja :
Potensiometer bekerja dengan cara mengubah posisi wiper pada resistor untuk mengatur nilai resistansi antara terminal wiper dan kedua terminal lainnya. Berikut adalah dua konfigurasi utama:
Sebagai Pembagi Tegangan: Potensiometer dapat digunakan sebagai pembagi tegangan dengan menghubungkan dua ujung resistor ke sumber tegangan. Tegangan output diambil dari wiper dan salah satu ujung resistor. Dengan menggeser wiper, tegangan output dapat diatur.
Sebagai Variabel Resistor: Dalam konfigurasi ini, salah satu ujung resistor dan wiper dihubungkan dalam rangkaian, sementara ujung resistor yang lain tidak digunakan. Nilai resistansi dapat diubah dengan menggeser wiper.
Jenis Potensiometer :
Linear: Mengubah resistansi secara linear seiring dengan pergerakan wiper.
Logaritmik: Mengubah resistansi dalam skala logaritmik, sering digunakan dalam pengaturan volume audio karena lebih sesuai dengan respons pendengaran manusia.
Sensor MQ2
Sensor MQ2 merupakan sensor penginderaan yang sering digunakan dibandingkan seri sensor MQ2 lainnya. Sensor ini menggunakan prinsip deteksi resistansi gas. Ketika sensor terpapar gas yang spesifik, resistansi internalnya berubah, dan perubahan ini diubah menjadi sinyal listrik yang dapat diukur.
MQ2 merupakan sensor yang berkerja menggunakan panas. Oleh karena itu dilapisi dengan dua bahan jaring bahan tahan karat halus atau disebut ‘jaringan anti ledakan’. Ini dilakukan supaya tidak terjadi ledakan karena sensor sensitif terhadap zat gas yang dapat memicu ledakan.
Fungsi lain sebagai pelindung sensor didalamnya dan menyaring partikel yang teruspensi, sehingga hanya elemen gas yang dapat melewati lubang-lubang halus. Clamp ring sebagai penjepit berlapis tembaga untuk mengamankan jaring.
Sensor MQ2 mempunyai enam kaki dan elemen sensing semikonduktor didalamnya. Dua kaki H berfungsi untuk memanaskan elemen penginderaan serta terhubung bersama oleh kumparan nikel-kromium.
Empat kaki lainya pembawa sinyal yakni A untuk sinyal digital dan B untuk sinyal analog, A dan B dihubungkan dengan kabel platinum. Kabel-kabel ini terhubung ke badan elemen penginderaan dan menyampaikan arus yang mengalir melalui elemen penginderaan.
Tubulat sensing penginderaan terbuat dari keramik berbahan dasar Aluminium Oxide (AL2O3) dengan lapisan Timah dioksida (SnO2). Bahan Timah Diosida yang paling penting karena bahannya yang sensitif terhadap gas yang berbahaya. Substrat keramik, yang akan memastikan area sensor dalam keadaan panas hingga mencapai suhu kerja.
Cara kerja
Sensor MQ2 adalah sensor gas semikonduktor yang mengandalkan perubahaan resistansi untuk mendeteksi keberadaan gas. Ketika diberikan tegangan, pemanas akan memanaskan bahan sensitif gas hingga suhu tertentu, lalu oksigen terangkat ke permukaan.
Sketika sensor berada pada udara yang bersih, hambatan pada elemenn sensititf gas akan relatif rendah. Sedangkan, snsor berada pada gas pereduksi, gas akan diadsorpsi oleh elemen sensitif, menyebabkan resistansi yang proposional terhadap konsentrasi gas tersebut. Perubahaan ini yang akan dikonversi konsentrasi gas menjadi sinyal analog atau sinyal digital yang dapat diolah oleh mikrokontroler.
Simbol MQ2 sensor di proteus:
Grafik respon sensor :
Sensor PIR
Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.
Simbol PIR sensor di proteus:
Sensor PIR terdiri dari beberapa bagian yaitu:
a) Lensa Fresnel
Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.
b) IR Filter
IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.
c) Pyroelectric Sensor
Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.
d) Amplifier
Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.
e) Komparator
Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.
Simulasi Gif kasar berikut menunjukkan bagaimana sensor PIR merespons manusia yang bergerak dan mengembangkan beberapa pulsa pendek dan tajam di seluruh output lead-nya untuk pemrosesan yang diperlukan atau memicu tahap relay yang dikonfigurasi dengan tepat
Touch Sensor
Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya.Tubuh manusia memiliki Panca Indera yang berfungsi untuk berinteraksi dengan lingkungan di sekitarnya. Konsep yang sama juga diterapkan pada mesin atau perangkat elektronik/listrik agar dapat melakukan interaksi dengan lingkungan disekitarnya. Oleh karena itu, berbagai jenis sensor pun diciptakan untuk melakukan tugas tersebut. Salah satu sensor tersebut adalah Sensor Sentuh atau Touch Sensor.
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Simbol touch sensor di proteus:
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Grafik Respon Sensor Touch
Dapat dilihat bahwa pada grafik di atas saat sentuhan terdeteksi maka signal touch akan muncul.
4. Sensor Suara
Simbol sound detector di proteus:
Sensor suara adalah sensor yang mampu mengubah besaran suara menjadi besaran listrik. Komponen yang terdapat di dalam sensor ini adalah electric condenser microphone atau mic kondenser.. Mic adalah komponen elektronika dimana cara kerjanya yaitu membran yang digetarkan oleh gelombang suara akan menghasilkan sinyal listrik.
Microphone dapat diklasifikasikan menjadi beberapa jenis dasar termasuk dinamis, elektrostatik dan piezoelektrik menurut sistem konversi mereka. Mikrofon dinamis masih memiliki tuntutan besar terutama di dunia musik, sementara mikrofon piezoelektrik secara luas digunakan terutama untuk mikrofon untuk meter rendah tingkat frekuensi suara. Mikrofon dinamis masih memiliki tuntutan besar terutama di dunia musik, sementara mikrofon piezoelektrik Digunakan secara luas terutama untuk mikrofon untuk meter rendah tingkat frekuensi suara. Untuk pengukuran, tipe elektrostatik (kondensor) mikrofon yang paling populer karena mereka dapat dirampingkan, memiliki respon frekuensi rata selama rentang frekuensi yang luas, dan menyediakan nyata stabilitas yang tinggi dibandingkan dengan jenis lain mikrofon.
Detektor Suara memiliki 3 output terpisah. Paling mudah untuk melihat apa yang dilakukan masing-masing dengan grafik. Berikut ini menggambarkan bagaimana detektor suara merespons serangkaian pulsa suara.
Ini menunjukkan tegangan output dari waktu ke waktu
Jejak hijau tua adalah output audio dari detektor suara. Tegangan audio langsung dari mikrofon ditemukan pada output ini.
Jejak hijau muda adalah keluaran amplop. Tegangan analog ini melacak amplitudo suara. Yang menarik, perhatikan bahwa denyut nadi ketiga terasa lebih keras saat berjalan.
Akhirnya, garis merah adalah output gerbang. Output ini rendah ketika kondisi tenang dan menjadi tinggi ketika suara terdeteksi.
5. Sensor Suhu LM35
Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt.Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dan dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian kontrol yang sangat mudah.IC LM 35 sebagai sensor suhu yang teliti dan terkemas dalam bentuk Integrated Circuit (IC), dimana output tegangan keluaran sangat linear terhadap perubahan suhu.Sensor ini berfungsi sebagai pengubah dari besaran fisis suhu ke besaran tegangan yang memiliki koefisien sebesar 10 mV /°C yang berarti bahwa kenaikan suhu 1° C maka akan terjadi kenaikan tegangan sebesar 10 mV.
IC LM 35 ini tidak memerlukan proses kalibrasi atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat Celsius pada temperatur ruang.Jangka sensor mulai dari – 55°C sampai dengan 150°C. IC LM35 penggunaannya dapat dikatakan sangat mudah, dapat dialiri arus sebesar 60 μ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan.
Dalam praktiknya proses antarmuka sensor LM35 dapat dikatakan sangat mudah. Pada IC sensor LM35 ini terdapat tiga buah pin kaki yakni Vs, Vout dan pin ground.Dalam pengoperasiannya pin Vs dihubungkan dengan tegangan sumber sebesar antara 4 – 20 volt sementara pin Ground dihubungkan dengan ground dan pin Vout merupakan keluaran yang akan mengalirkan tegangan yang besarnya akan sesuai dengan suhu yang diterimanya dari sekitar
Simbol LM35 di proteus:
Prinsip kerja alat pengukur suhu ini, adalah sensor suhu difungsikan untuk mengubah besaran suhu menjadi tegangan, dengan kata lain panas yang ditangkap oleh LM35 sebagai sensor suhu akan diubah menjadi tegangan.
Berikut hubungan resistansi dengan kenaikan suhu pada sensor LM35:
6. Sensor Jarak GP2D12
Penggunaan sensor GP2D12 ini tidak ada perlakuan khusus dalam proses pembacaannya, sehingga apabila ada mikrokontroler yang sudah terdapat ADC (Seperti Atmega8535) di dalam maka sensor jarak ini tinggal dihubungkan dan dibaca tegangan keluarannya. ATmega8535 merupakan salah satu jenis dari mikrokontroler AVR buatan ATMEL yang mempunyai 8 channel ADC (Analog to Digital Converter) dengan resolusi 10bit. Maksudnya adalah mikrokontroler ini mampu untuk diberi masukan tegangan analog sampai 8 saluran secara bersamaan dengan ketelitian sampai 10 bit, sehingga pemakaian sensor jarak GP2D12 pada mikrokontroler ini maksimal adalah 8 buah.
Adapun prinsip kerja sensor sharp GP2D12 ini menggunakan prinsip pantulan sinar infra merah. Dalam aplikasi ini nilai tegangan keluran dari sensor yang berbanding terbalik dengan hasil pembacaan jarak dikomparasi dengan tegangan referensi komparator. Prinsip kerja dari rangkaian komparator sensor sharp GP2D12 adalah jika sensor mengeluarkan tegangan melebihi tegangan referensi, maka keluaran dari komparator akan berlogika rendah. Jika tegangan referensi lebih besar dari tegangan sensor maka keluaran dari komparator akan berlogika tinggi. Selain menggunakan komparator, untuk mengakases sensor jarak sharp GP2D12 dapat dengan menggunakan prinsip ADC, atau dengan kata lain mengolah sinyal analog dari pembacaan sensor sharp GP2D12 ke bentuk digital dengan bantuan pemrograman.
GP2D12 (Infrared Range Detector) adalah sensor jarak yang berbasikan infra red, sensor ini dapat mendeteksi obyek dengan jarak 8 sampai 80 cm. Output dari GP2D12 adalah berupa tegangan analog. Agar GP2D12 dapat berhubungan dengan mikrokontroller di perlukan ADC ( Analog to Digital conventer ) yang berfungsi untuk mengkonversi output dari GP2D12 yang berupa analog menjadi digital.
Ketika ada orang masuk ke toilet, sensor pir akan mendeteksi
orang yang masuk ditandai dengan testpin yang berlogika 1, hal ini akan membuat
adanya tegangan keluaran dari pir sensor ini yang akan menjadi Vinput pada op
amp. Op amp yang digunakan adalah voltage follower (Acl=1) sehingga Vout=Vin.
Karena adanya tegangan output, maka akan ada arus yang mengalir ke R1 lalu
mengalir ke kaki basis, mengalir ke kaki emitter dan ke ground. kerena
merupakan transistor dengan pembiasan emitter stablizied maka akan ada arus
yang mengalir melalui power supply 6V, melewati tahanan R21, mengalir ke kaki
basis, ke kaki emitter dan ke ground.
Ketika Vbe sudah berada diatas 0.7V, berarti transistor berada pada daerah
aktif, dan karena ada arus pada kaki basis, maka akan ada arus kolektor yang
mengalir melalui power supply 6V, melewati tahanan R2, melewati relay, mengalir
ke kaki kolektor, ke kaki emitter dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa
kumparan, maka akan muncul medan magnet yang akan menarik switch ke kiri dan
membuat rangkaian di sebelah kanan terhubung.
Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui
baterai 12V dan mengalir melewati buzzer, sehingga buzzer akan berbunyi.
Ketika ada suara dari buzzer, sound sensor akan mendeteksi
suara ditandai dengan testpin yang berlogika 1, hal ini akan membuat adanya
tegangan keluaran dari pir sensor ini yang akan menjadi Vinput pada op amp. Op
amp yang digunakan adalah differential amplifier, dimana Vo didapatkan dari: Vo
non inv amp - Vo inv amp. Karena adanya tegangan output, maka akan ada arus
yang mengalir ke R4 lalu mengalir ke kaki basis, mengalir ke kaki emitter dan
ke ground. kerena merupakan transistor dengan pembiasan fixed bias maka akan
ada arus yang mengalir melalui power supply 5V, melewati tahanan R18, mengalir
ke kaki basis, ke kaki emitter dan ke
ground. Ketika Vbe sudah berada diatas 0.7V, berarti transistor berada
pada daerah aktif, dan karena ada arus pada kaki basis, maka akan ada arus
kolektor yang mengalir melalui tegangan 5V, melewati tahanan R6, melewati
relay, mengalir ke kaki kolektor, ke kaki emitter dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa
kumparan, maka akan muncul medan magnet yang akan menarik switch ke kiri dan
membuat rangkaian di sebelah kanan terhubung.
Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui
baterai 12V dan terbagi melewati buzzer, dan melewati led, serta melewati motor
dan ruangan akan blur sebagai indikator ada orang yang masuk ke dalam toilet.
Touch sensor
Ketika ada suara sentuhan, touch sensor akan mendeteksi sentuhan tersebut ditandai dengan testpin yang berlogika 1, hal ini akan membuat adanya tegangan keluaran dari touch sensor ini yang akan menjadi Vinput pada op amp. Op amp yang digunakan adalah non inverting amplifier, dimana Vo didapatkan dari: Vo=[(Rf/Rin)+1]xVi. Karena adanya tegangan output, maka akan ada arus yang mengalir ke RB lalu mengalir ke kaki basis, mengalir ke kaki emitter, melewati tahanan RE dan ke ground. disini digunakan transistor dengan pembiasan self bias, ketika Vbe sudah berada diatas 0.7V, berarti transistor berada pada daerah aktif, dan karena ada arus pada kaki basis, maka akan ada arus kolektor yang mengalir melalui tegangan 10V, melewati relay, mengalir ke kaki kolektor, ke kaki emitter, mengalir melewati tahanan RE dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa kumparan, maka akan muncul medan magnet yang akan menarik switch ke kiri dan membuat rangkaian di sebelah kanan terhubung. Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui baterai 12V, terbagi melewati tahanan R11 dan led, serta melewati motor sehingga led akan menyala dan motor akan berputar yang akan mengeluarkan air dari kran.
Sensor gas MQ
Ketika ada gas metana, sensor gas akan mendeteksi gas tersebut ditandai dengan testpin yang berlogika 1, hal ini akan membuat adanya tegangan keluaran dari sensor ini yang akan menjadi Vinput pada op amp. Op amp yang digunakan adalah differential amplifier, dimana Vo didapatkan dari: Vo non inv amp - Vo inv amp. Karena adanya tegangan output, maka akan ada arus yang mengalir ke R29, lalu arus akan terbagi, ada yang mengalir melalui tahanan R19 dan ke ground. serta akan ada arus yang mengalir ke kaki basis, mengalir ke kaki emitter, melewati tahanan R16 dan ke ground. kerena merupakan transistor dengan pembiasan voltage divider bias maka akan ada arus yang mengalir melalui power supply 5V, melewati tahanan R17, laluu arus akan terbagi, akan ada arus yang mengalir ke R29, lalu arus akan terbagi, ada yang mengalir melalui tahanan R19 dan ke ground. serta akan ada arus yang mengalir ke kaki basis, mengalir ke kaki emitter, melewati tahanan R16 dan ke ground. ketika Vbe sudah berada diatas 0.7V, berarti transistor berada pada daerah aktif, dan karena ada arus pada kaki basis, maka akan ada arus kolektor yang mengalir melalui tegangan 5V, melewati relay, mengalir ke kaki kolektor, ke kaki emitter, mengalir melewati tahanan R16 dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa kumparan, maka akan muncul medan magnet yang akan menarik switch ke kiri dan membuat rangkaian di sebelah kanan terhubung. Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui baterai 5V dan mengalir melewati motor dan led, sehingga motor akan berjalan dan led akan menyala.
Sensor suhu
Ketika suhu diatas 30 derajat celcius, sensor suhu akan mendeteksi suhu yang tinggi tersebut, hal ini akan membuat adanya tegangan keluaran dari sensor suhu ini, dimana diatur untuk setiap 1 derajat celcius akan menghasilkan tegangan 0.1V, tegangan keluaran ini yang akan menjadi Vinput pada op amp. Op amp yang digunakan adalah detektor non inverting dengan Vref tidak nol, dimana Vo sama dengan +- saturasi, didapatkan dari: Vo=Aol(Vi-Vref). Karena adanya tegangan output, maka akan ada arus yang mengalir ke R31 lalu mengalir ke kaki basis, mengalir ke kaki emitter, melewati tahanan R22 dan ke ground. disini digunakan transistor dengan pembiasan self bias, ketika Vbe sudah berada diatas 0.7V, berarti transistor berada pada daerah aktif, dan karena ada arus pada kaki basis, maka akan ada arus kolektor yang mengalir melalui tegangan 5V, melewati tahanan R5, melewati relay, mengalir ke kaki kolektor, ke kaki emitter, mengalir melewati tahanan R22 dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa kumparan, maka akan muncul medan magnet yang akan menarik switch ke kanan dan membuat rangkaian di sebelah kiri terhubung. Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui baterai 5V dan mengalir melewati motor dan led, sehingga motor akan berjalan dan led akan menyala.
Sensor Jarak
Ketika ada tangan mendekati wastafel dengan Jarak kurang dari 17 cm, sensor jarak akan mendeteksi tangan tersebut, hal ini akan membuat adanya tegangan keluaran dari sensor jarak ini, dimana potensiometer diatur pada 30%, tegangan keluaran ini yang akan menjadi Vinput pada op amp. Op amp yang digunakan adalah detektor non inverting dengan Vref tidak nol, dimana Vo sama dengan +- saturasi, didapatkan dari: Vo=Aol(Vi-Vref). Karena adanya tegangan output, maka akan ada arus yang mengalir melalui tahanan R12 lalu mengalir ke kaki basis, mengalir ke kaki emitter dan ke ground. kerena merupakan transistor dengan pembiasan fixed bias maka akan ada arus yang mengalir melalui power supply 5V, melewati tahanan R15, mengalir ke kaki basis, ke kaki emitter dan ke ground. Ketika Vbe sudah berada diatas 0.7V, berarti transistor berada pada daerah aktif, dan karena ada arus pada kaki basis, maka akan ada arus kolektor yang mengalir melalui tegangan 5V, melewati tahanan R13, melewati relay, mengalir ke kaki kolektor, ke kaki emitter dan ke ground.
Ketika ada arus yang mengalir melalui relay yang berupa kumparan, maka akan muncul medan magnet yang akan menarik switch ke kiri dan membuat rangkaian di sebelah kanan terhubung. Karena rangkaian terhubung, maka akan ada arus yang mengalir melalui baterai 12V, terbagi melewati tahanan R14 dan led, serta melewati motor sehingga led akan menyala dan motor akan berputar yang akan mengeluarkan air dari kran.
[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Percobaan Percobaan ... DIODE FORWARD BIAS DAN REVERSE BIAS A. B. C. DIODE HALF BRIDGE DIODE FULL BRIDGE DIODE ZENER MODUL 1 1. Pendahuluan [kembali] Dioda adalah komponen elektronika aktif yang terdiri dari pertemuan semikonduktor jenis P dan semikonduktor jenis N ( P-N Junction ). Elektroda yang dihubungan dengan material jenis P disebut anoda dan yang dihubungkan dengan material jenis N disebut katoda. 2. Tujuan [kembali] 1. Mengetahui prinsip kerja dan karakteristik dioda. 2. Mengetahui prinsip kerja dan karakteristik dioda Zener. 3. Mengetahui prinsip kerja dan karakteristik Half Bridge Rectifier dan Full Bridg...
[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Pendahuluan 2. Tujuan 3. Alat dan Bahan 4. Dasar Teori 5. Percobaan Percobaan ... Fixed Bias Self Bias Voltage Divider Bias IC dengan Regulator MODUL 2 Transistor 1. Pendahuluan [kembali] Transistor adalah komponen elektronika aktif yang umumnya memiliki 3 kaki yaitu NPN dan PNP. Fungsi dari Transistor sebagai saklar, penguat sinyal AC, penguat arus, dan masih banyak lagi kegunaanya pada rangkaian. 2. Tujuan [kembali] Mengetahui prinsip kerja transistor. Mengetahui prinsip kerja dan karakteristik dari rangkaian fixed bias. Mengetahui prinsip kerja dan karakteristik dari rangkaian self bias. Mengetahui prinsip kerja dan karakteristik dari rangkaian voltage divider bias. Mengetahui prinsip kerja Class A Amplifier Mengetahui prinsip kerja Regulator Power Supply 3. Alat dan Bahan [kembali] Transistor 2N3904 Resistor 1K, 10K, 560 ohm DC Power supply Multimeter...
Komentar
Posting Komentar